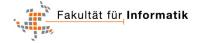


VI. Robotermodellierung II

Prof. Dr.-Ing. Rüdiger Dillmann

Inhalt

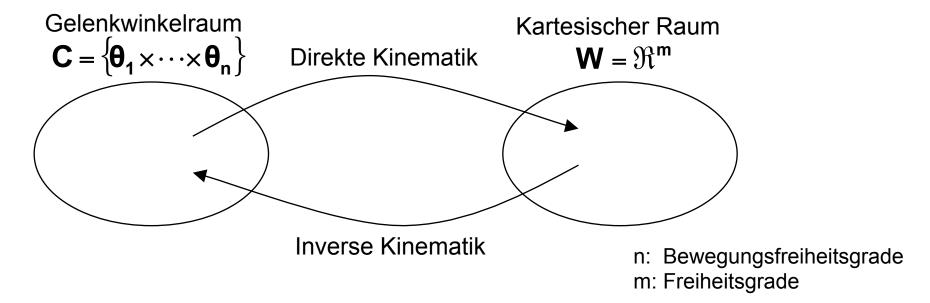
- Inverses Kinematisches Problem
- Geschlossene Methoden
 - Geometrische Methoden
 - Algebraische Methoden
- Numerische Methoden
- Zusammenfassung

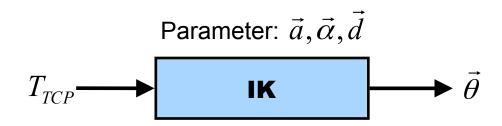


Inverse Kinematik

Inverses kinematisches Problem

Problemstellung

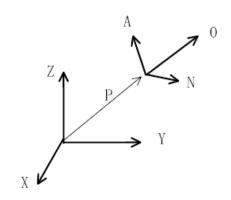




Vorgehensweise

Lage des TCP:

$$T_{TCP} = \begin{bmatrix} N_x & O_x & A_x & P_x \\ N_y & O_y & A_y & P_y \\ N_z & O_z & A_z & P_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



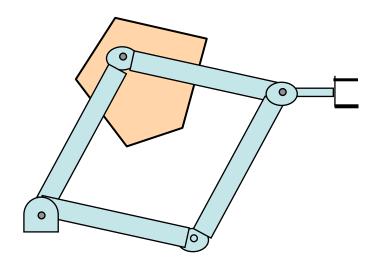
Kinematisches Modell:

$$T_{TCP} = S_{Basis,Greifer}(\theta) = A_{0,1}(\theta_1) \cdot A_{1,2}(\theta_2) \cdot \ldots \cdot A_{n-2,n-1,}(\theta_{n-1}) \cdot A_{n-1,n}(\theta_n)$$

- ⇒Gleichung nach θ auflösen
- Nichtlineares Problem

Unzulässige / Unerreichbare Stellungen

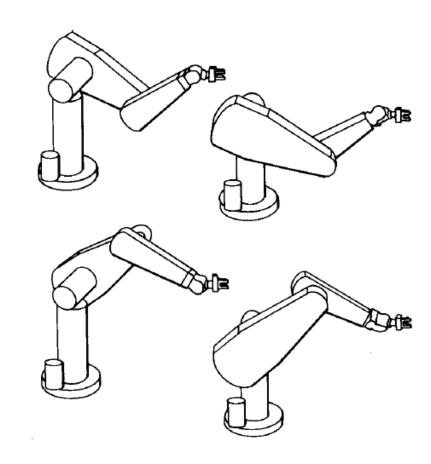
- Eine unerreichbare Stellung nennt man solche außerhalb des Armradius des Roboters.
- Eine unzulässige Stellung ist prinzipiell erreichbar, jedoch aufgrund physikalischer Randbedingungen nicht einnehmbar:
 - Konstruktionsbedingte Winkelbeschränkungen (Arbeitsraum)
 - Kollision des Roboters mit Hindernissen im Arbeitsraum
 - Kollision von Werkstück oder Effektor mit Hindernissen oder dem Roboter selbst



Die Vermeidung solcher Stellungen sollte bereits bei der Trajektorienplanung berücksichtigt werden (→ Hindernisvermeidung).

Eindeutigkeit

- In der Ebene gibt es für Systeme mit n ≥ 3 Bewegungsfreiheitsgraden mehrere Möglichkeiten, eine vorgegebene Effektorstellung zu erreichen.
- Im 3D-Fall gilt dies f
 ür alle Roboter mit n ≥ 6 Bewegungsfreiheitsgraden.
- Reduktionsstellungen sind solche, zu deren Erreichen n < 6 Bewegungsfreiheitsgrade ausreichen würden.



Gleiche Endeffektorstellung bei unterschiedlichen Konfigurationen

Eigenschaften des IK Problems

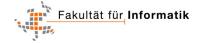
- Kein allgemein anwendbares Verfahren
- Anforderungen an Geschwindigkeit:
 Die Berechnung der Gelenkwinkel muss schnell erfolgen

Lösungsverfahren

- Lösungen in geschlossener Form
 - Geometrische Methoden
 - Algebraische Methoden
- Numerische Methoden

Inhalt

- Inverses Kinematisches Problem
- Geschlossene Methoden
 - Geometrische Methoden
 - Algebraische Methoden
- Numerische Methoden
- Zusammenfassung



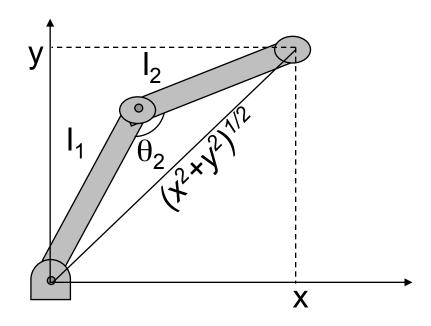
Vorgehen

Nutze geometrische Beziehungen, um die Gelenkwinkel θ aus T_{TCP} zu bestimmen. Das kinematische Modell wird dabei nicht direkt verwendet.

Anwendung von:

- Trigonometrischen Funktionen
- Sinus- / Kosinussätzen

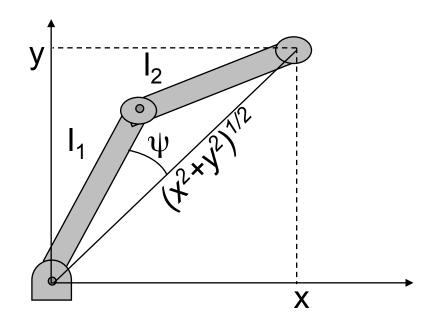
Beispiel (1)



Mit Kosinussatz:
$$x^2 + y^2 = l_1^2 + l_2^2 - 2l_1 l_2 \cos(\theta_2)$$

$$\Rightarrow \cos(\theta_2) = -\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2} \Rightarrow \theta_2$$

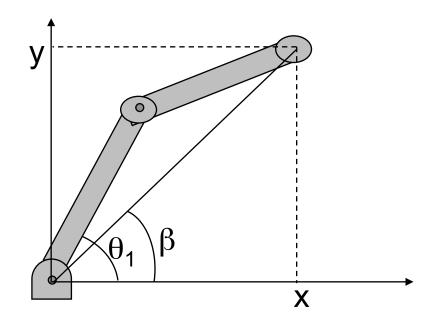
Beispiel (2)



$$l_2^2 = x^2 + y^2 + l_1^2 - 2l_1 \sqrt{x^2 + y^2} \cos(\psi)$$

$$\Rightarrow \cos(\psi) = \frac{(x^2 + y^2 + l_1^2 - l_2^2)}{2l_1 \sqrt{x^2 + y^2}} \tag{1}$$

Beispiel (3)



$$\tan(\beta) = \frac{y}{x}$$
 $\theta_1 = \psi + \beta$

mit (1)
$$\Longrightarrow \theta_1$$

Polynomialisierung

• Transzendente Gleichungen sind in der Regel schwer zu lösen, da die Variable θ gewöhnlich in der Form $\cos \theta$ bzw. $\sin \theta$ auftritt.

Werkzeug: Substitution

$$u = tan \theta/2$$

unter Verwendung von

$$\cos \theta = (1-u^2) / (1+u^2)$$

 $\sin \theta = 2u / (1+u^2)$

→ Auflösung von Polynomgleichungen

Inhalt

- Inverses Kinematisches Problem
- Geschlossene Methoden
 - Geometrische Methoden
 - Algebraische Methoden
- Numerische Methoden
- Zusammenfassung

Vorgehen

Gleichsetzen von TCP Position T_{TCP} und Transformation
 S_{Basis, Greifer} aus dem kinematischen Modell:

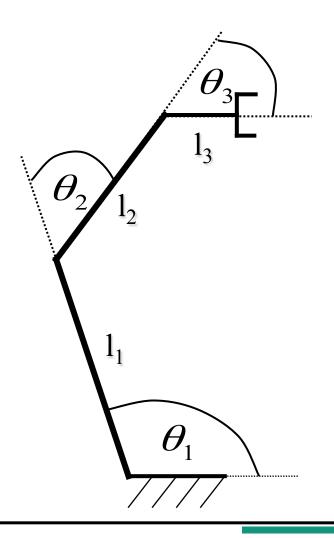
$$T_{TCP} = S_{Basis,Greifer}(\theta)$$

Koeffizientenvergleich der beiden Matrizen

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} \Rightarrow a_{ij} = b_{ij} \forall i, j \in [1:n]$$

 → 16 Gleichungen bei homogenen Matrizen in 3D (wovon 4 trivial sind: 0=0, 1=1) → 12 Gleichungen

Beispiel (1)



Aus kinematischem Modell:

(Beispiel Vorlesung V.)

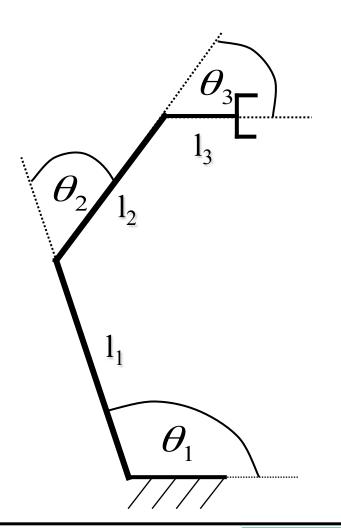
(Beispiel Vorlesung V.)
$$S_{Basis,Greifer} = A_{0,3} = \begin{bmatrix} c_{123} & -s_{123} & 0 & l_1c_1 + l_2c_{12} \\ s_{123} & c_{123} & 0 & l_1s_1 + l_2s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Gewünschte Lage des Endeffektors:

$$T_{TCP} = \begin{bmatrix} c_{\phi} & -s_{\phi} & 0 & x \\ s_{\phi} & c_{\phi} & 0 & y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Abkürzungen: $c_{123} = cos(\theta_1 + \theta_2 + \theta_3), s_{123} = sin(\theta_1 + \theta_2 + \theta_3), ...$

Beispiel (2)



Koeffizientenvergleich:

$$\begin{bmatrix} c_{\phi} & -s_{\phi} & 0 & x \\ s_{\phi} & c_{\phi} & 0 & y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{123} & -s_{123} & 0 & l_1c_1 + l_2c_{12} \\ s_{123} & c_{123} & 0 & l_1s_1 + l_2s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

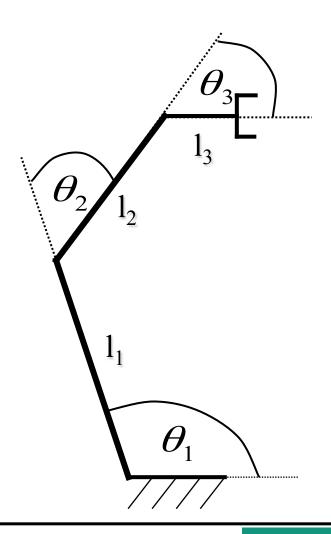
$$c_{\phi} = c_{123} \qquad s_{\phi} = s_{123}$$

$$x = l_1 c_1 + l_2 c_{12}$$

$$y = l_1 s_1 + l_2 s_{12}$$

⇒ Nach θ auflösen

Beispiel (3)



Summe der Quadrate von (3) und (4)

$$x^2 + y^2 = l_1^2 + l_2^2 + 2l_1l_2c_2$$

$$c_2 = \frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2} \implies \theta_2$$

• Zwei Lösungen für θ_2 sind möglich. Warum?

Beispiel (4)

Berechnung von θ_1 :

Aus Koeffizientenvergleich:
$$x = l_1c_1 + l_2c_{12}$$

$$y = l_1 s_1 + l_2 s_{12}$$

Additionstheorem:
$$x = l_1c_1 + l_2(c_1c_2 - s_1s_2)$$

$$y = l_1 s_1 + l_2 (s_1 c_2 + s_2 c_1)$$

Vereinfachen:
$$x = (l_1 + l_2 c_2)c_1 - (l_2 s_2)s_1$$

$$y = (l_1 + l_2c_2)s_1 + (l_2s_2)c_1$$

Auflösung schwierig. Hilfe durch Schablonen für typische Gleichungen (MAPLE).

Algorithmus zur algebraischen Lösung

Problem

Oft können nicht alle Gelenkwinkel aus den 12 Gleichungen bestimmt werden.

Ansatz

 Nutze Kenntnis der Transformationen aus, um die Chancen für analytisch lösbare Gleichungen zu erhöhen.

Gegeben:

Die Transformationsmatrizen $A_{0,1}, A_{1,2}, ..., A_{n-1,n}$ und T_{TCP}

Gesucht:

Die Gelenkwinkel θ_1 bis θ_n

Algorithmus zur algebraischen Lösung

$$T_{TCP} = A_{0,1}(\theta_1) \cdot A_{1,2}(\theta_2) \cdot A_{2,3}(\theta_3) \cdot A_{3,4}(\theta_4) \cdot A_{4,5}(\theta_5) \cdot A_{5,6}(\theta_6)$$
(1)

Vorgehensweise

- 1) Invertiere $A_{0,1}(\theta_1)$ und multipliziere beide Seiten der Gleichung (1) mit $A_{0,1}^{-1}$
- Versuche aus dem neu entstehenden Gleichungssystem eine Gleichung zu finden, die nur eine Unbekannte enthält und löse diese Gleichung nach der Unbekannten.
- Versuche eine Gleichung im Gleichungssystem zu finden, die durch die Substitution der im letzten Schritt gefundenen Lösung nach eine Unbekannten lösbar ist.
- 4) Falls keine Lösungen mehr gefunden werden können, so muss eine weitere Matrix $(A_{1,2}(\theta_2))$ invertiert werden.
- 5) Wiederhole die Schritte 1 4 bis alle Gelenkwinkel ermittelt sind.

Algorithmus zur algebraischen Lösung

$$\begin{split} A_{0,1}^{-1} \cdot T_{TCP} &= A_{1,2} \cdot A_{2,3} \cdot A_{3,4} \cdot A_{4,5} \cdot A_{5,6} \\ A_{1,2}^{-1} \cdot A_{0,1}^{-1} \cdot T_{TCP} &= A_{2,3} \cdot A_{3,4} \cdot A_{4,5} \cdot A_{5,6} \\ A_{2,3}^{-1} \cdot A_{1,2}^{-1} \cdot A_{0,1}^{-1} \cdot T_{TCP} &= A_{3,4} \cdot A_{4,5} \cdot A_{5,6} \\ A_{3,4}^{-1} \cdot A_{2,3}^{-1} \cdot A_{1,2}^{-1} \cdot A_{0,1}^{-1} \cdot T_{TCP} &= A_{4,5} \cdot A_{5,6} \\ A_{4,5}^{-1} \cdot A_{3,4}^{-1} \cdot A_{2,3}^{-1} \cdot A_{1,2}^{-1} \cdot A_{0,1}^{-1} \cdot T_{TCP} &= A_{5,6} \end{split}$$

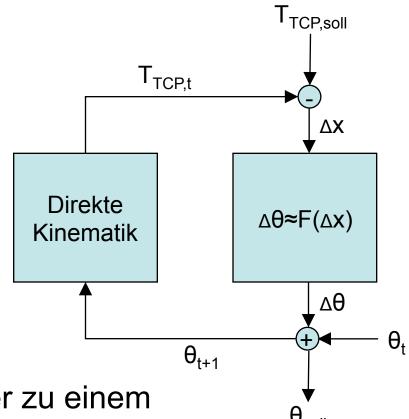
$$\begin{split} T_{TCP} \cdot A_{5,6}^{-1} &= A_{0,1} \cdot A_{1,2} \cdot A_{2,3} \cdot A_{3,4} \cdot A_{4,5} \\ T_{TCP} \cdot A_{5,6}^{-1} \cdot A_{4,5}^{-1} &= A_{0,1} \cdot A_{1,2} \cdot A_{2,3} \cdot A_{3,4} \\ T_{TCP} \cdot A_{5,6}^{-1} \cdot A_{4,5}^{-1} \cdot A_{3,4}^{-1} &= A_{0,1} \cdot A_{1,2} \cdot A_{2,3} \\ T_{TCP} \cdot A_{5,6}^{-1} \cdot A_{4,5}^{-1} \cdot A_{3,4}^{-1} \cdot A_{2,3}^{-1} &= A_{0,1} \cdot A_{1,2} \\ T_{TCP} \cdot A_{5,6}^{-1} \cdot A_{4,5}^{-1} \cdot A_{3,4}^{-1} \cdot A_{2,3}^{-1} &= A_{0,1} \end{split}$$

Inhalt

- Inverses Kinematisches Problem
- Geschlossene Methoden
 - Geometrische Methoden
 - Algebraische Methoden
- Numerische Methoden
- Zusammenfassung

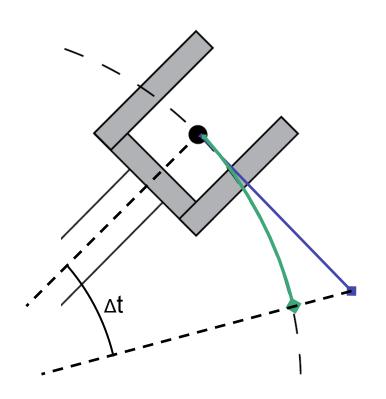
Es wird iterativ versucht, eine Lösung für den Gelenkwinkelvektor θ zu finden.

- Berechne $T_{TCP,t}$ in Iteration t aus Gelenkwinkelstellungen θ_t (θ_0 =Stellung des Roboters)
- Berechne Fehler \(\Delta \times \) aus Sollposition des TCP und berechneter Position
- Benutze approximiertes inverses kinematisches Modell F um Gelenkwinkelfehler Δθ zu berechnen
- Berechne $\theta_{t+1} = \theta_t + \Delta \theta$
- Fahre mit Iteration t+1 fort



Wie kann der Gelenkwinkelfehler zu einem Fehler in der TCP-Lage approximiert werden?

Ansatz: Linearisierung



Lage des TCP:

$$f(\theta)$$

Änderung der Lage bei Bewegung:

$$df(\theta)/d\theta$$

Annahme:

Modell gültig für Zeitspanne ∆t

Jacobi Matrix

$$x(t) = f(\theta(t)) \qquad f: R^n \to R^m$$

n: Anzahl Bew.-Freiheitsgrade

m: Anzahl Freiheitsgrade

$$x(t) = f(\theta(t)) \qquad f: R^n \to R^m$$
Ableitung von f
$$\frac{dx(t)}{dt} = \dot{x}(t) = J(\theta) \dot{\theta}(t) \longleftarrow \text{Innere Ableitung}$$

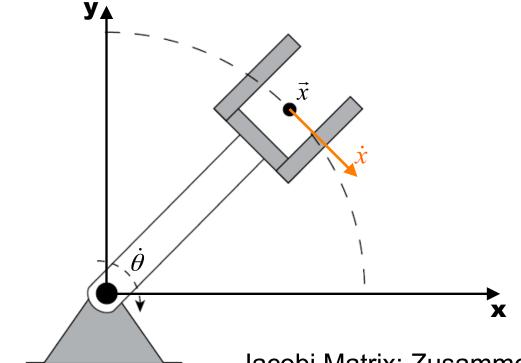
Jacobi Matrix ist die Matrix sämtlicher partieller Ableitungen der Funktion f:

$$J = \begin{pmatrix} \frac{\mathcal{J}_1}{\partial \theta_1} & \cdots & \frac{\mathcal{J}_1}{\partial \theta_n} \\ \vdots & \ddots & \vdots \\ \frac{\mathcal{J}_m}{\partial \theta_1} & \cdots & \frac{\mathcal{J}_m}{\partial \theta_n} \end{pmatrix} \qquad J_{ij} = \frac{\mathcal{J}_i}{\partial \theta_j} \qquad 1 \le i \le m, 1 \le j \le n$$

$$J_{ij} = \frac{\partial f_i}{\partial \theta_j}$$

$$1 \le i \le m, 1 \le j \le n$$

Jacobi Matrix – geometrische Interpretation



$$\theta = 45^{\circ}$$

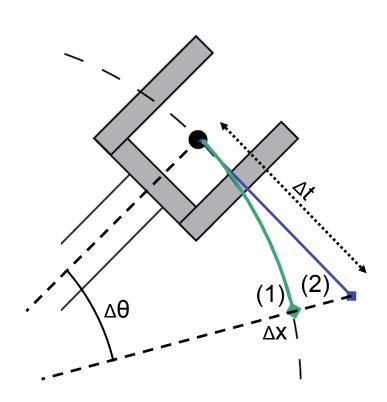
$$\dot{x}(t) = J(\theta) \dot{\theta}(t)$$

$$J(45^{\circ}) = s \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Skalar abhängig von Länge

Jacobi Matrix: Zusammenhang zwischen Gelenkgeschwindigkeit und Geschwindigkeit im kartesischen Raum.

Differenzenquotient



(1) Tatsächliche Bewegung gemäß

$$\dot{x}(t) = J(\theta) \,\dot{\theta}(t)$$

(2) Angenäherte Bewegung im Intervall Δt mittels Differenzenquotient:

$$\Delta x \approx J(\theta) \Delta \theta$$

Durch Übergang vom Differentialquotienten zum Differenzenquotienten wird die Änderung approximiert. Dadurch wird das Problem linearisiert.

Umkehrung

 $\Delta x \approx J(\theta) \Delta \theta$ nähert Vorwärtskinematik an.

 $\Delta\theta \approx J^{-1}(\theta)\Delta x$ nähert inverse Kinematik an.

Fälle

- n=m: Invertierung der Jacobi-Matrix möglich
- n>m: Inverse existiert nicht
 Benutze generalisierte inverse Matrix: "Pseudoinverse"

$$\Delta x = J\Delta \theta$$

$$J^{T} \Delta x = (J^{T} J)\Delta \theta \qquad \Rightarrow J^{\pm} = (J^{T} J)^{-1} J^{T}$$

$$(J^{T} J)^{-1} J^{T} \Delta x = \Delta \theta$$

Ansatz

1. Vorwärtskinematik als Funktion:

$$x(t) = f(\theta(t))$$

x(t): Beschreibungsvektor der TCP Lage

 $\theta(t)$: Gelenkwinkelstellungen

2. Ableitung nach der Zeit:

$$\frac{dx(t)}{dt} = \dot{x}(t) = J(\theta) \dot{\theta}(t)$$

x*(t): Geschwindigkeiten des TCP

θ*(t): Winkelgeschwindigkeiten der Gelenke

J(θ): Jacobi Matrix

3. Übergang zum Differenzenquotienten:

$$\Delta x \approx J(\theta) \Delta \theta$$

Δx: Fehler in der TCP Lage

Δθ: Fehler im Gelenkwinkel

4. Umkehrung:

$$\Delta\theta \approx J^{-1}(\theta)\Delta x$$

Singularitäten

 J^{-1} existiert nicht, wenn J singulär ist.

Die Inverse existiert genau dann, wenn rang J = m

Umgang mit Singularitäten

- Vermeidung von Singularitäten
- Levenberg-Marquardt Minimierung (Damped least squares)

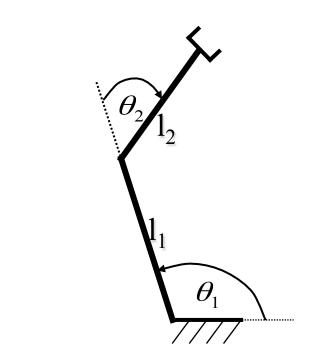
Beispiel (1):

$$x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2)$$

$$y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2)$$

$$\begin{bmatrix} \mathbf{x}^{\bullet} \\ \mathbf{y}^{\bullet} \end{bmatrix} = \mathbf{J}(\theta) \cdot \theta^{\bullet}(t) = \mathbf{J}(\theta) \cdot \begin{bmatrix} \theta_{1}^{\bullet} \\ \theta_{2}^{\bullet} \end{bmatrix}$$

$$= \begin{pmatrix} -1_{1} \sin \theta_{1} - 1_{2} \sin(\theta_{1} + \theta_{2}) & -1_{2} \sin(\theta_{1} + \theta_{2}) \\ 1_{1} \cos \theta_{1} + 1_{2} \cos(\theta_{1} + \theta_{2}) & 1_{2} \cos(\theta_{1} + \theta_{2}) \end{pmatrix} \cdot \begin{pmatrix} \theta_{1} \\ \theta_{2} \end{pmatrix}$$



$$-l_2 \sin(\theta_1 + \theta_2) \\ l_2 \cos(\theta_1 + \theta_2) \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

Beispiel (2):

Die Jacobi-Matrix muss invertiert werden:

$$\begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{bmatrix} = \frac{1}{l_1 l_2 \sin(\theta_2)} \begin{bmatrix} l_2 c_{12} & l_2 s_{12} \\ -l_1 c_{12} - l_1 c_1 & -l_1 s_{12} - l_1 s_1 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

 $J(\theta)^{-1}$

Für θ_2 = 0, ±180 ist J(θ) singulär !!!!

Abkürzungen: $c_{12} = cos(\theta_1 + \theta_2)$

$$s_{12} = \sin(\theta_1 + \theta_2)$$

$$c_i = \cos(\theta_i)$$

$$s_i = \sin(\theta_i)$$

Alle singulären Konfigurationen liegen auf dem Rand des Arbeitsraumes.

Inhalt

- Inverses Kinematisches Problem
- Geschlossene Methoden
 - Geometrische Methoden
 - Algebraische Methoden
- Numerische Methoden
- Zusammenfassung

Zusammenfassung

Direkte Kinematik:

$$f: R^n \rightarrow R^m \quad X = f(\theta)$$

Inverse Kinematik:

$$f^{-1}: R^m \rightarrow R^n \qquad \theta = f^{-1}(X)$$

Fälle:

- Es existiert eine eindeutige Lösung.
- Es existiert eine endliche Menge von Lösungen.
- Es existiert eine unendliche Menge von Lösungen.
- Es existiert keine Lösung.

Zusammenfassung

allgemeine Verfahren

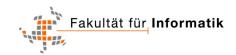
- Numerische Verfahren
- allgemeine Lösungsverfahren für Gleichungssystem
 - hoher Aufwand
 - ⇒lange Zeitdauer

spezielle Verfahren

auf trigonometrische
 Beziehungen basierende
 graphische Verfahren

⇒ schnell

nur für speziellen Robotertyp



IV. Robotermodellierung II

Ende